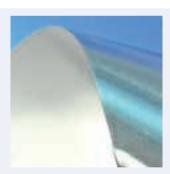


basic principles of TEC	Basic principles of TLC	182 - 184
-------------------------	-------------------------	-----------

MN ready-to-use layers for TLC

Summary	185 - 186
Standard silica layers	187
Unmodified silica layers for HPTLC	190
Modified silica layers for HPTLC	193
Aluminium oxide layers	198
Cellulose layers	199
Layers for special separations	201
Chromatography papers	204

TLC micro-sets


Introductory kits for TLC	205 - 207
Accessories for TLC	208
Spray reagents	208

Adsorbents for TLC

Silica, aluminium oxide, polyamide, cellulose, fluorescent indicators 209 - 210

glass plates

ALUGRAM® aluminium sheets

POLYGRAM® polyester sheets

MN

Basic principles of TLC

Thin layer chromatography (TLC) and high performance thin layer chromatography (HPTLC), also called planar chromatography, are, like all chromatographic techniques, based on a multistage distribution process involving

- a suitable adsorbent (the stationary phase) coated as a thin layer onto a suitable support (e.g. glass plate, polyester or aluminium sheet)
- solvents or solvent mixtures (the mobile phase or eluent)
- the sample molecules

The principle of TLC is known for more than 100 years [M. W. Beyerinck, Z. Phys. Chem. 3 (1889) 110]. The real break-through as an analytical method, however, came about 50 years ago as a consequence of the pioneering work of Egon Stahl [Thin layer chromatography, 2nd edition, Springer-Verlag Berlin, Reprint 1988].

Today TLC has gained increasing importance as an analytical separation technique, which is probably due to effects of instrumentalisation and automatisation [H. Jork, Laborpraxis 2 (1992) 110]. At the same time the applicability of thin layer chromatography was enhanced by the development of new adsorbents and supports.

Today MACHEREY-NAGEL offers a versatile range of ready-to-use layers, which are the result of 45 years of continuous research and development.

Features of modern TLC/HPTLC

The success of thin layer chromatography as a highly efficient microanalytical separation method is based on a large number of advantageous properties:

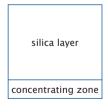
- high sample throughput in a short time
- suitable for screening tests
- pilot procedure for HPLC and flash chromatography
- after separation the analytical information can be stored for a longer period of time (the TLC readyto-use layer acts as storage medium for data)
- separated substances can be subjected to subsequent analytical procedures (e.g. IR, MS) at a later date
- rapid and cost-efficient optimisation of the separation due to easy change of mobile and stationary phase

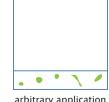
For a better understanding of a thin layer chromatographic separation we describe here the basic steps:

- sample preparation
- sample application
- development of a chromatogram, separation techniques
- evaluation in TLC visualisation of separated substances, qualitative and quantitative determinations

Principle steps of a thin layer chromatographic separation Sample preparation

For separation the sample must meet several requirements to obtain good results. Since the TLC plate is a disposable product, sample preparation in general is not as demanding as for the other chromatographic methods. However, eventually several steps for sample pretreatment may be necessary. These include sampling, mechanical crushing of a sample, extraction steps, filtration and sometimes enrichment of interesting components or clean-up, i.e. removal of undesired impurities.


Our TLC micro-sets introduce some simple methods of sample pretreatment. The dyes or dye mixtures of the beginner's set do not require complicated procedures. The advanced sets require the user to carry out some additional steps for preparing a sample, thus introducing the user to techniques often performed in industrial laboratories.


Thorough preparation of samples is an important prerequisite for the success of a TLC separation. For our range of products for more demanding sample pretreatment please see the chapter "SPE" from page 2.

Sample application

The aim of a chromatographic separation determines how the sample should be applied to the TLC plate or sheet. The most frequent technique is application with a glass capillary as spot or short streak. Application as streak will yield better results especially for instrumental quantification. For both types of application some manual skill is required to obtain reproducible results. Substance zones which are too large from the beginning will cause poor separation since during chromatography they will become even larger and more diffuse.

A valuable aid for manual application especially of large volumes of very dilute samples is the concentrating zone (e.g. SILGUR-25 UV_{254}), which consists of a chromatographically inactive adsorbent (kieselguhr). The substances to be separated are concentrated to a small band in the concentrating zone and the separation starts at the beginning of the chromatographically active adsorbent silica.

davelaged

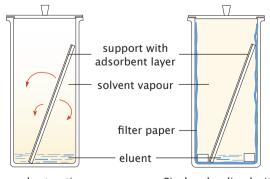
arbitrary application in conc. zone

developed chromatogram

Another method for sample concentration is a short pre-elution (few mm) with a solvent, in which all substances have a high $R_{\rm f}$ value.

Basic principles of TLC

If a quantitative evaluation with a TLC scanner is to follow the separation we recommend to use commercially available sample applicators for spotting. These range from simple spotting guides via nanoapplicators to completely automated spotting devices. Application as streak can be performed automatically by spraying of the sample without touching the layer of the TLC plate. Application as band over the whole width of the TLC plate is especially important for preparative TLC.


After application allow the solvent of the samples to evaporate completely (about 10 minutes) or blow with cold or hot air. Development of a chromatogram should never start before the solvent of the applied samples is evaporated completely.

Developing a chromatogram - separation techniques

The most frequently used separation technique is ascending TLC in a trough chamber (standard method, linear development). Usually it is applied as single development. However, multiple development, with or without change of eluent (step technique) can improve separation results. For 2-dimensional development only 1 spot of the sample is applied in one edge of a plate. After chromatography in the first direction the plate is dried, turned by 90° and developed in the 2nd dimension with another eluent. Thus complicated mixtures give 2-dimensional chromatograms taking advantage of the different separating properties of two eluents.

For selection and optimisation of the eluent numerous publications are available. A generally applicable standardised optimisation method is described by H. Keuker et al. [in "Proceedings of the International Symposium on Instrumental TLC", Brighton, Sussex, UK 1989, 105 – 114]

It is important to pay attention to the atmosphere in the developing chamber. If reproducible migration distances are required, saturation of the chamber atmosphere with eluent vapour is necessary. For this purpose the developing chamber is lined with well absorbing chromatography paper (e.g. MN 260) and charged with a correspondingly larger volume of eluent.

A) normal saturation, arrows show evaporation of eluent from the layer

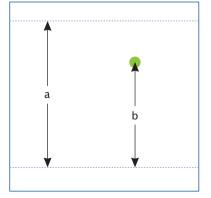
B) chamber lined with filter paper, saturated with eluent vapour

Another interesting technique is the PMD technique (Programmed Multiple Development) [K. Burger, Fresenius Z. Anal. Chem. 318 (1984) 228 – 233], which is a true gradient development on silica for TLC. Contrary to the common multiple development every single run is slightly longer than the previous one. Thus broadening of substance zones during chromatography is easily compensated for. Usually, about 10 to 25 development cycles are run, generally with a universal gradient. Since this technique can be automated, you can also find the name AMD (Automated Multiple Development) [K. Burger, Pflanzenschutz-Nachrichten Bayer 41,2 (1988) 173] (also see our nano plates with extremely thin silica layer, page 192). It should be noted, that the considerable increase in performance with these techniques also requires a con-

Evaluation of a thin layer chromatogram

siderable increase in instrumental expense.

Evaluation depends on the purpose of the chromatographic analysis. For qualitative determination often localisation of substances is sufficient. This can be easily achieved by parallel runs with reference substances.


A parameter often used for qualitative evaluation is the R_f value (retention factor) or the 100fold value hR_f . The R_f value is defined as follows:

$$R_f = \frac{\text{distance starting line - middle of spot}}{\text{distance starting line - solvent front}} = \frac{b}{a}$$

i.e. the $R_{\rm f}$ values are between 0 and 1, best between 0.1 and 0.8 (i.e. 10 – 80 for h $R_{\rm f}$). If reproducible $R_{\rm f}$ values are to be obtained, it is essential that several parameters such as chamber saturation, composition of solvent mixtures, temperature etc. are strictly controlled.

Quantitative evaluation is possible by suitable calibration measurements. For this purpose either the area of a substance spot is measured or a photometric evaluation is performed directly on the layer. The latter procedure, however, requires a higher instrumental expense.

The following paragraphs describe the most frequently used methods for evaluation in TLC.

solvent front

substance spot

starting line

Basic principles of TLC

Qualitative detection

Qualitative evaluation is generally made directly on the TLC plate via the characteristic R_f values of substances, i.e. the ratio of distance start – substance zone to distance start – solvent front and specific chemical reactions.

Visualisation of separated substances

First of all it is necessary to recognise the position of a substance spot. Only in very few cases the sample is a dye which can be seen with the naked eye. Much more often for unspecific visualisation substances can be viewed under UV light, since many substances show a UV absorption. If a fluorescent indicator is added to the layer, all substances absorbing in the respective region of wave length cause a quenching of the fluorescence, i.e. they appear as dark spots on the fluorescent layer. Customary fluorescent indicators are excited at 254 nm or (less frequently) at 366 nm with a mercury lamp. For our programme of fluorescent indicators for TLC please see page 210.

Identification of separated substances is possible via the R_f value compared to the pure compound, which is often applied simultaneously on the same plate.

For a number of compounds their native fluorescence can be used for visualisation, which is excited by UV light (mostly long-wave UV) (e.g. aflatoxins). This allows not only determination of the $R_{\rm f}$ value, but often enables a further qualitative assignment.

If these methods do not allow localisation or characterisation of a substance, post-chromatographic detection methods can be applied, chemical reactions on the TLC plate [H. Jork et al., Dünnschicht-Chromatographie, VCH Verlagsgesellschaft, 1989]. Quite unspecific reactions are iodine adsorption and the charring technique (spraying with sulphuric acid and heat treatment).

More reliable results are possible with specific reagents for spraying or dipping, which form coloured or fluorescent compounds with the substances to be detected. Depending on the sensitivity of these reactions they are not only used for group or substance specific characterisation (in addition to the $R_{\rm f}$ value) but also for quantification down to trace levels. As example take the ninhydrin reaction. Formation of a (usually red) zone with this detection method yields the information, that a certain group of substances, e.g. α -amino acids, are present. The $R_{\rm f}$ value allows further assignment to one or several single compounds.

For identification of a substance a combination of different detection methods can be useful. Thus almost all lipids can be converted to products with light green fluorescence by reaction with 2',7'-dichlorofluorescein. Adsorption of iodine vapour enables a differentiation between saturated and unsaturated lipids or lipids containing nitrogen. And finally the $R_{\rm f}$ value is a third means of identification.

Here are some general remarks concerning spraying: use all spray reagents under a fume hood. The developed, dried TLC plate or sheet is placed on a sheet of filter paper for spraying. Usually it is sufficient to fill the sprayer with about 5 – 10 ml solution. Spray from a distance of about 15 cm with the aid of a rubber ball or – if available – with pressurised air. It is always better to spray a layer twice very thinly and evenly (with intermediate drying), than to saturate the layer with excessive spray reagent. In the latter case spots tend to become diffuse. After visualisation mark outlines of zones with a lead pencil, because some spots tend to fade after a while.

Especially for quantitative evaluation short dipping of the layer in the respective reagent solution is recommended. For this purpose automatic instruments are commercially available, which allow reproducible dipping.

When a substance is localised on the TLC plate (e.g. in the UV), but not yet identified, TLC scanners allow recording of UV spectra of individual substance zones directly on the layer, or the zone is removed by scratching or cutting (for sheets), eluted and further analysed, e.g. by FT-IR, RAMAN, NMR or mass spectroscopy.

Quantitative evaluation

Often TLC is considered to be only a semiquantitative analytical procedure. This is true for visual evaluation of spots, since the eye can only compare but not measure absolute values. If, however, a direct optical evaluation ("in situ" measurement) is performed on the TLC plate with a thin layer scanner, after measurement of calibration functions exact quantitative results are possible. Commercial scanners offer many features such as evaluation in absorption and fluorescence, unattended programmed scanning of lanes, multi-wave length measurement, background correction, selectable base line for integration, recording of spectra, evaluation of circular or anti-circular chromatograms with very high ease of operation. In addition to manual operation control by a computer is possible with respective data collection and storage. Usually wavelengths from 200 to 700 nm are available (visible and UV), e.g. all post-chromatographic (and of course all pre-chromatographic) visualisation procedures are evaluated with the proper wavelength, which is determined with the instrument. Time requirements for all these possibilities are extremely low. Interlaboratory experiments with standard deviations of 2 % show how excellent results are obtainable [Planar Chromatography, Vol. 1, ed. R. E. Kaiser, Dr. Alfred Hüthig Verlag, Heidelberg, 1986].

Overview of MN ready-to-use layers for TLC

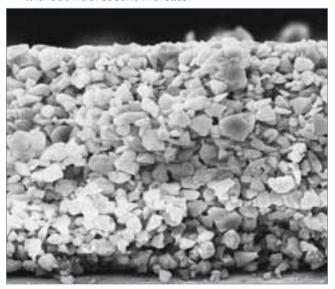
Advantages of MN plates and sheets for TLC

continuous high quality guaranteed by stringent production control including standardised lot tests, surface checks for roughness or cracks as well as hardness and adherence checks

- comprehensive range of phases for TLC / HPTLC there is no universal TLC plate which meets all possible types of analyses. Our versatile range of TLC ready-to-use layers covers many different types of applications.
- immediately ready for chromatographic separation coatings or impregnations are not necessary
- homogeneous, smooth, well adhering layers
 an important criterion especially for reproducible
 quantitative evaluation

Electron microscope photograph of a cross section through a glass plate with silica layer (magnification x 500)

Adsorbents for MN plates and sheets for TLC


classical adsorbents

for $\sim 80\%$ of all TLC separations silica 60 (mean pore diameter 60 Å = 6 nm) is used. Other classical adsorbents are aluminium oxide, cellulose, kieselguhr, ion exchangers and polyamide.

special phases

reversed phases, mainly C18 (octadecyl) modified silica, but also cyano-, amino-, diol and RP-2 modified silica are available. Special layers for specific separations, like our CHIRALPLATE for enantiomer separation complete the versatile range of TLC plates.

- particle size distribution and thickness of layer are chosen to fit the given type of application (e.g. HPTLC, standard or preparative separations)
- most MN ready-to-use layers are available with or without fluorescent indicator

Electron microscope photograph of a cross section through an aluminium sheet with silica layer (magnification x 500)

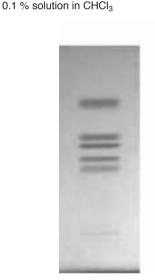
Supports for ready to use layers for TLC

	glass plates	POLYGRAM®	ALUGRAM®
Physical properties of support materials			
Material	glass	polyester	aluminium
Thickness (approx.)	1.3 mm	0.2 mm	0.15 mm
Weight, packaging and storage requirements	high	low	low
Torsional strength	ideal	low	relatively high
Temperature stability	high	max. 185 °C	high
Susceptible to breakage	yes	no	no
Can be cut with scissors	no	yes	yes
Chemical resistance of support material	S		
against solvents	high	high	high
against mineral acids and conc. ammonia	high	high	low
Stability of the binder system of NP plate	es in water		
suitability for aqueous detection reagents	depends on the	very suitable	limited suitability

www.mn-net.com — 185

Summary of MN ready-to-use layers for TLC

Phase	Layer	Page
Standard silica		
ADAMANT	silica 60, improved binder system, optimized particle size distribution	187
SIL G	silica 60, standard grade, particle size 5 - 17 μm	188
DURASIL	silica 60, special binder system	189
SIL N-HR	high purity silica 60, special binder system, higher gypsum content	190
SILGUR	silica 60 with kieselguhr concentrating zone	190
Unmodified silica for HP7	ΓLC	
Nano-SILGUR	nano silica 60, with kieselguhr concentrating zone	190
Nano-ADAMANT	nano silica 60, optimised binder system and particle size distribution	191
Nano-SIL	nano silica 60, standard grade, particle size 2 - 10 µm	192
Nano-DURASIL	nano silica 60, special binder system	192
AMD SIL	nano silica 60, extremely thin layer for AMD procedure	192
Modified silica for HPTLC		
		193
	nano silica with partial or complete C18 modification	193
RP-18 W/UV ₂₅₄ RP-2/UV ₂₅₄	nano silica with partial octadecyl modification, wettable with water silanised silica = dimethyl-modified silica 60	194
Nano-SIL CN	cyano-modified nano silica	195
Nano-SIL NH ₂	amino-modified nano silica	196
Nano-SIL DIOL	diol-modified nano silica	197
	alor modifica fiano sinca	137
Aluminium oxide		100
ALOX-25 / ALOX N	aluminium oxide	198
Cellulose, unmodified an		
CEL 300	native fibrous cellulose MN 300	199
CEL 400	microcrystalline cellulose MN 400 (AVICEL®)	199
CEL 300 DEAE	diethylaminoethyl-modified cellulose ion exchanger	200
CEL 300 DEAE/HR	mixed layer of cellulose ion exchanger and high purity cellulose	200
CEL 300 PEI	polyethyleneimine-impregnated cellulose ion exchanger	200
CEL 300 AC	acetylated cellulose MN 300	200
Layers for special separa	tions	
POLYAMIDE-6	perlon = ε -aminopolycaprolactame	201
CHIRALPLATE	RP silica with Cu ²⁺ ions and chiral reagent, for enantiomer separation	201
SIL G-25 HR	high purity silica 60 with gypsum, recommended for aflatoxin analysis	202
SIL G-25 Tenside	silica G with ammonium sulphate for separation of surfactants	202
GUR N	kieselguhr	202
Nano-SIL PAH	nano silica with special impregnation for PAH analysis	203
IONEX-25 SA-Na	mixed layer of strongly acidic cation exchanger and silica	203
IONEX-25 SB-AC	mixed layer of strongly basic anion exchanger and silica	203
ALOX/CEL-AC-Mix	mixed layer of aluminium oxide and acetylated cellulose	203
SILCEL-Mix	mixed layer of cellulose and silica	203
GURSIL-Mix	mixed layer of kieselguhr and silica	203


ADAMANT

unmodified standard silica layers

- silica 60, specific surface (BET) $\sim 500 \text{ m}^2/\text{g}$, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 5 17 μ m
- outstanding hardness and abrasion resistance due to an optimized binder system
- o increased separation efficiency due to an optimized particle size distribution
- high suitability for trace analyses resulting from a UV indicator with increased brilliance and a low-noise background of the layer

Separation of steroids

Layers: ADAMANT UV₂₅₄, SIL G/UV₂₅₄ Eluent: chloroform – methanol (97:3) Developing time: 10 minutes

ADAMANT UV 254

SIL G/UV₂₅₄

ADAMANT	SIL G
0.37	0.27
0.43	0.30
0.50	0.39
0.55	0.46
0.73	0.62
5.0 cm	5.7 cm
	0.37 0.43 0.50 0.55 0.73

MN Appl. No. 402930

Separation of barbiturates

Layer: ADAMANT UV254 Eluent: chloroform – acetone (95:5, v/v) Migration distance: 73 mm in 20 minutes

Sample volume: 1 μ l

Substance	R_{f}
Thiamylal (0.5 %)	0.69
Thiopental (1.0 %)	0.65
Hexobarbital (5.0 %)	0.41
Pentobarbital (1.0 %)	0.26
Phenobarbital (1.0 %)	0.18

MN Appl. No. 402950

For more applications of ADAMANT ready-to-use layers, check our application database at www.mn-net.com

Ordering information

Plate size [cm]	2.5 x 7.5	5	5 x 10	5 x 20	10 x 10	10 x 20	20 x 20	Fluorescent	Thickness
Pack of [plates]	100	50	200	100	25	50	25	indicator	of layer
Glass plates									
ADAMANT ADAMANT UV ₂₅₄	821005	821040 821010	821040.200 821010.200	821015	821050 821020	821025	821060 821030	_ UV ₂₅₄	0.25 mm 0.25 mm

N www.mn-net.com — 187

Standard silica layers for TLC

ALUGRAM® Xtra SIL G unmodified standard silica layers on aluminium

- silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 5 17 μm; standard grade
- Outstanding wettability for precise colorization results, even with 100% agueous eluents
- excellent separation efficiency and reproducibility from lot to lot
- easy and reliable cutting due to an optimized binder system, no flaking of silica

Binder: highly polymeric product, which is stable in almost all organic solvents and resistant towards aggressive visualisation reagents; also completely stable in purely aqueous eluents

Separation of nutmeg ingredients Anethole Myristicin Eugenol Linalool

Sample solution: shake 1.0 g freshly powdered drug for 3 min with 4 ml

methanol and filter; apply 10 μ l ALUGRAM® Xtra SIL G UV ₂₅₄

Layer: ALUGRAM® Xtra SIL G UV ₂₅₄
Eluent: toluene – ethyl acetate (95:5, v/v)

Migration distance: 15 cm

Detection: 254 nm: underivatised

daylight and 366 nm: spray with 5 % ethanolic sulphuric

acid, 1 % vanillic acid and heat to 105 °C

The chromatograms show the following zones with increasing $R_{\rm f}$ values: linalool (bluish grey), eugenol (yellowish brown), myristicin (reddish brown), and anethole (pink-violet). Other coloured zones may appear.

MN Appl. No. 403590

Ordering information

Plate size [cm]	4 x 8	5 x 7.5	5 x 10	5 x 20	10 x 20	20 x 20	Thickness	Fluorescent	
Pack of [plates]	50	20	50	50	20	25	of layer	indicator	
ALUGRAM® Xtra aluminium sheets									
SIL G		818230.20	818261	818232		818233	0.20 mm	-	
SIL G/UV ₂₅₄	818331	818330.20	818360	818332	818362	818333	0.20 mm	UV_{254}	

Standard silica layers for TLC

SIL G

unmodified standard silica layers

- silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 5 17 μm; standard grade
- thickness of layer for analytical plates 0.25 mm, for preparative plates 0.5 and 1 mm; for 2 mm preparative layers a slightly coarser material is used
- indicators: manganese activated zinc silicate with green fluorescence for short-wave UV (254 nm); special inorganic fluorescent pigment with blue fluorescence for long-wave UV (366 nm)
- binders: highly polymeric products, which are stable in almost all organic solvents and resistant towards aggressive visualisation reagents; binder system for POLYGRAM® sheets (as for ALUGRAM® Xtra sheets) is also completely stable in purely aqueous eluents

Ordering information

Glass plates									
Plate size [cm]	2.5 x 7.5	5	x 10	5 x 20	10 x 10	10 x 20	20 x 20	40 x 20	Thickness
Pack of [plates]	100	50	200	100	25	50	25		of layer
SIL G-25 SIL G-25 UV ₂₅₄ SIL G-25 UV ₂₅₄₊₃₆₆	809028.100	809017 809027	809017.200 809027.200	809011 809021 809121	809020	809012 809022 809122	809013 809023 809123		0.25 mm 0.25 mm 0.25 mm
Pack of [plates]							20		
SIL G-50 SIL G-50 UV ₂₅₄							809051 809053		0.50 mm 0.50 mm
Pack of [plates]							15		
SIL G-100 SIL G-100 UV ₂₅₄							809061 809063		1.00 mm 1.00 mm
Pack of [plates]							12		
SIL G-200 SIL G-200 UV ₂₅₄							809073 809083		2.00 mm 2.00 mm
POLYGRAM® po	olyester she	ets							
Plate size [cm] Pack of [plates]	2.5 x 7.5 200	4 x 8 50		5 x 20 50			20 x 20 25	40 x 20 25	
SIL G SIL G/UV ₂₅₄	805902 805901	805032 805021		805012 805022			805013 805023	805014 805024	0.20 mm 0.20 mm
SIL G/UV ₂₅₄					Roll 500	x 20 cm		805017	0.20 mm
ALUGRAM® aluminium sheets									
Plate size [cm]	2.5 x 7.5	4 x 8	5 x 7.5	5 x 10	5 x 20	10 x 20	20 x 20		
Pack of [plates]	200	50	20	50	50	20	25		
SIL G SIL G/UV ₂₅₄	818129	818131	818030.20 818130.20	818161 818160	818032 818132	818163 818162	818033 818133		0.20 mm 0.20 mm

DURASIL

unmodified standard silica layers

- silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 5 17 μm
- hard, water-resistant and wettable layers due to a special binder system
- on reversed phase tendency, more polar than SIL G

Ordering information

Plate size [cm] Pack of [plates]	5 50	x 10 200	5 x 20 100	10 x 20 50	20 x 20 25	Thickness of layer	Fluorescent indicator
Glass plates							
DURASIL-25 DURASIL-25 UV ₂₅₄	812005	812005.200	812006	812003 812007	812004 812008	0.25 mm 0.25 mm	– UV ₂₅₄

www.mn-net.com

iin Layer Chromatograph

Silica layers with concentrating zone

SIL N-HR

unmodified standard silica layers

- high purity silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 5 17 μm
 different binder system compared to SIL G results in different separation characteristics
- a special feature of the POLYGRAM® SIL N-HR is a higher gypsum content

Ordering information

Plate size [cm]	5 x 20	20 x 20	Thickness of layer	Fluorescent indicator
Pack of [plates]	50	25		
POLYGRAM® polye	ster sheets			
SIL N-HR		804013	0.20 mm	-
SIL N-HR/UV ₂₅₄	804022	804023	0.20 mm	UV ₂₅₄

For plates SIL G-HR for aflatoxin separation please see page 202.

SILGUR

unmodified standard silica layers with concentrating zone

- silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 5 17 um
- **kieselguhr zone for rapid sample application:** because kieselguhr is completely inert towards a large number of compounds, the samples always form a narrow band at the interface of the two adsorbents, irrespective of shape, size or position of the spots in the concentrating zone (see page 182). Separation then takes place in the silica layer.

Ordering information

Plate size [cm]	10 x 20	20 x 20	Thickness of layer	Fluorescent indicator
Pack of [plates]	50	25		
Glass plates				
SILGUR-25 SILGUR-25 UV ₂₅₄	810012 810022	810013 810023	0.25 mm 0.25 mm	_ UV ₂₅₄

Nano-SILGUR

unmodified HPTLC silica layers with concentrating zone

- nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 2 10 μm
- narrow fractionation of the silica particles allows sharper separations, shorter developing times, shorter migration distances, lower amount of samples and an increased detection sensitivity compared to standard silica
- with kieselguhr zone for rapid sample application (see SILGUR above)

Ordering information

_			
Plate size [cm]	10 x 10	Thickness of layer	Fluorescent indicator
Pack of [plates]	25		
Glass plates			
Nano-SILGUR-20 Nano-SILGUR-20 UV ₂₅₄	811032 811042	0.20 mm 0.20 mm	_ UV ₂₅₄

Nano silica layers for HPTLC

Nano-ADAMANT

unmodified HPTLC silica layers

- onano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0,75 ml/g, particle size 2 - 10 µm
- outstanding hardness and abrasion resistance due to an optimized binder system
- increased separation efficiency due to an optimized particle size distribution
- high suitability for trace analyses resulting from a UV indicator with increased brilliance and a low-noise background of the layer
- onarrow fractionation of the silica particles allows theoretical plate heights, which are one order of magnitude smaller than on standard silica layers with the advantage of sharper separations, shorter developing times, shorter migration distances, lower amount of samples, and increased detection sensitivity with equal selectivity

Comparison of ADAMANT and Nano-ADAMANT plates for separation of anthraquinone dyes

Layers:

A) ADAMANT

Sample:

B) Nano-ADAMANT 1μ l, about 0.1 %

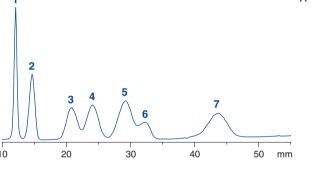
Eluent:

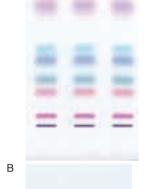
toluene - cyclohex-

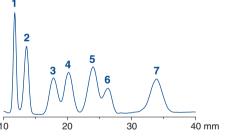
ane (4:3, v/v) A) 30 min, B) 15 min

Migration time: Peaks:

1. Blue 3


2. Violet 2


3. Red


4. Green 5. Blue 1

6. Greenish blue

7. Violet 1

Ordering information

Plate size [cm] Pack of [plates[5 x 5 100	10 x 10 25	10 x 20 50	Thickness of layer	Fluorescent indicator
Glass plates					
Nano-ADAMANT	821130	821140	821150	0.20 mm	-
Nano-ADAMANT UV ₂₅₄	821100	821110	821120	0.20 mm	UV_{254}

10

MN www.mn-net.com

Nano silica layers for HPTLC

Nano-SIL

unmodified HPTLC silica layers

- nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0,75 ml/g, particle size 2 10 μm
- o indicator: manganese activated zinc silicate with green fluorescence for short-wave UV (254 nm)
- binder: highly polymeric product, which is stable in almost all organic solvents and resistant towards aggressive visualisation reagents
- narrow fractionation of the silica particles allows sharper separations, shorter developing times, shorter migration distances, smaller samples and an increased detection sensitivity compared to SIL G plates

Ordering information

Plate size [cm]	5 x 5	5 x 20	10 x 10	10 x 20	20 x 20	Thickness of layer	Fluorescent indicator
Pack of [plates]	100	50	25	50	25		inuicator
Glass plates							
Nano-SIL-20 Nano-SIL-20 UV ₂₅₄	811011 811021		811012 811022	811013 811023		0.20 mm 0.20 mm	– UV ₂₅₄
ALUGRAM® aluminiun	n sheets						
Nano-SIL G Nano-SIL G/UV ₂₅₄		818140 818142			818141 818143	0.20 mm 0.20 mm	– UV ₂₅₄

Nano-DURASIL

unmodified HPTLC silica layers

- nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0,75 ml/g, particle size 2 10 μm
- indicator: manganese activated zinc silicate with green fluorescence for short-wave UV (254 nm)
- hard, water-resistant and wettable layers due to a special binder system
- narrow fractionation of the silica particles allows sharper separations, shorter developing times, shorter migration distances, smaller samples and an increased detection sensitivity compared to DURASIL plates
- different selectivity compared to ADAMANT and SIL-G plates
- ono reversed phase tendency, more polar than Nano-SIL

Ordering information

Plate size [cm]	5 x 5	10 x 10	10 x 20	Thickness of layer	Fluorescent
Pack of [plates]	100	25	50		indicator
Glass plates					
Nano-DURASIL-20		812010	812011	0.20 mm	_
Nano-DURASIL-20 UV ₂₅₄	812012	812013	812014	0.20 mm	UV_{254}

AMD SIL

thin unmodified HPTLC silica layers

- nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0,75 ml/g, particle size 2 10 μm
- very thin nano silica layer for the AMD procedure (automated multiple development), which allows rapid and efficient simultaneous analyses of several active ingredients at ultra trace levels (see page 183)

Ordering information

Plate size [cm]	10 x 20	Pack of [plates]	Thickness of layer	Fluorescent indicator
Glass plates				
AMD SIL G-05 UV ₂₅₄ AMD SIL G-10 UV ₂₅₄	811101 811103	5 25	0.05 mm 0.10 mm	UV ₂₅₄ UV ₂₅₄

Modified RP silica layers for HPTLC

Nano-SIL C 18

octadecyl-modified HPTLC silica layers

- base material: nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 2 10 μm, pH stability 2 10 indicator: acid-resistant product with a pale blue fluorescence for short-wave UV (254 nm); UV-absorbing substances apppear as dark-blue to black spots on a light-blue background
- opartial (50 %) or complete (100 %) octadecyl modification, carbon content 7.5 and 14 %, respectively
- order of polarity: silica > DIOL > NH₂ > CN > RP-2 > \mathbb{C} 18-50 > RP-18 W > \mathbb{C} 18-100
- reversed phase separation mode with eluents from anhydrous solvents to mixtures with high concentrations of water (see table and figure below)
- recommended application: alkaloids, amino acids, preservatives, optical brighteners, barbiturates, polycyclic aromatic hydrocarbons (PAH), drugs, peptides, flavonoids, phenols, indole derivatives, steroids

Ordering information

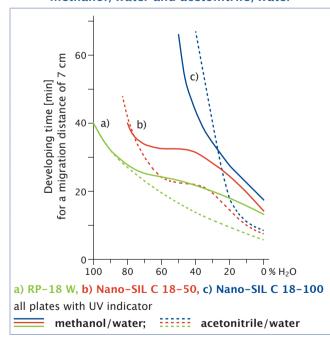

MN

Plate size [cm] Pack of [plates]		10 x 10 25	Thickness of layer	Fluorescent indicator
Glass plates				
Nano-SIL C 18-50	المام الم	811054	0.20 mm	-
Nano-SIL C 18-50 UV ₂₅₄	50 % silanised	811064	0.20 mm	UV ₂₅₄
Nano-SIL C 18-100	1000/	811052	0.20 mm	-
Nano-SIL C 18-100 UV ₂₅₄	} 100 % silanised	811062	0.20 mm	UV_{254}

Migration of C 18-50 and C 18-100 silica layers as compared to RP-18 W plates

Eluent	v/v	9	distances [m C 18-100	-
methanol/H ₂ O	2:1 1:1 1:2 1:3 1:4 0:1	57 52 50 40 30	45 21 0 0 0	44 40 43 45 46 54
acetonitrile/H ₂ O	2:1 1:1 1:2 1:3 1:9	62 52 51 48 20	46 30 27 15 0	66 54 46 44 42
chloroform		68	64	71

Elution properties of MN RP plates in mixtures of methanol/water and acetonitrile/water

For numerous separations with MN RP plates please visit our application database at www.mn-net.com

www.mn-net.com — 193

Modified RP silica layers for TLC and HPTLC

RP-18 W/UV₂₅₄

octadecyl-modified HPTLC silica layers

- base material: nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 2 10 μm; for preparative plates (1 mm thickness of layer) standard silica 60, particle size 5 17 μm pH stability 2 10
 - indicator: acid-resistant product with a pale blue fluorescence for short-wave UV (254 nm); UV-absorbing substances apppear as dark-blue to black spots on a light-blue background
- partial octadecyl (C₁₈) modification, wettable with water, carbon content 14 %
- order of polarity: silica > DIOL > NH₂ > CN > RP-2 > C $18-50 > \mathbb{RP}-18 \ \mathbb{W} > C 18-100$
- onormal phase or reversed phase separation modes with eluents from anhydrous solvents to mixtures with high concentrations of water (see table and figure on previous page); the relative polarity of the eluent determines the polarity of the layer
- recommended application: aminophenols, barbiturates, preservatives, nucleobases, polycyclic aromatic hydrocarbons, steroids, tetracyclines, plasticizers (phthalates)

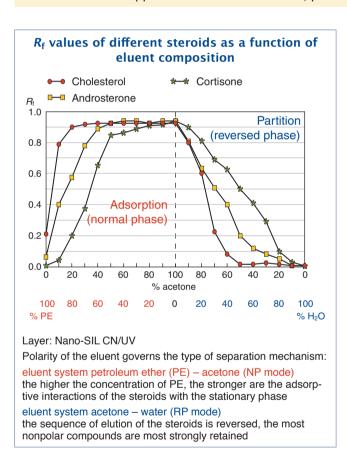
Ordering information

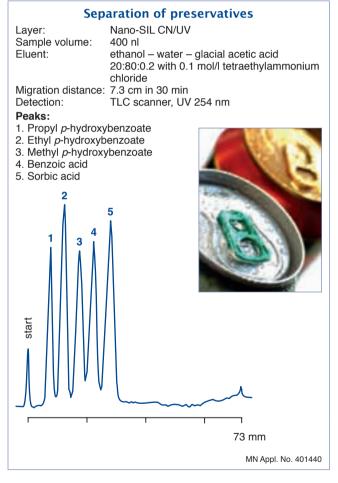
Glass plates								
Plate size [cm]			5 x 20	10 x 10	10 x 20	20 x 20	Thickness of	Fluorescent
Pack of [plates]			50	25	50	25	layer	indicator
RP-18 W/UV ₂₅₄			811073	811075	811072	811071	0.25 mm	UV_{254}
Pack of [plates]						15		
RP-18 W/UV ₂₅₄						811074	1.00 mm	UV_{254}
ALUGRAM® alu	ıminium s	heets						
Plate size [cm]	4 x 8	5 x 10	5 x 20	10 x 10		20 x 20		
Pack of [plates]	50	50	50	25		25		
RP-18 W/UV ₂₅₄	818144	818152	818145	818147		818146	0.15 mm	UV_{254}

RP-2/UV₂₅₄ "silanised silica" = dimethyl-modified standard silica layers

- base material: silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 5 17 μm, pH stability 2 10 indicator: acid-resistant product with a pale blue fluorescence for short-wave UV (254 nm); UV-absorbing substances apppear as dark-blue to black spots on a light-blue background
- silanised silica with dimethyl modification, carbon content 4 %
- order of polarity: silica > DIOL > NH₂ > CN > RP-2 > C 18-50 > RP-18 W > C 18-100
- normal phase or reversed phase separation modes with purely organic, organic aqueous or purely aqueous eluents
- recommended application: active plant constituents, steroids

Ordering information


Plate size [cm] Pack of [plates]	4 x 8 50	10 x 10 25	10 x 20 50	20 x 20 25	Thickness of layer	Fluorescent indicator
Glass plates	30		30		·	
RP-2/UV ₂₅₄		811080	811081	811082	0.25 mm	UV ₂₅₄
ALUGRAM® a	luminium she	ets				
RP-2/UV ₂₅₄	818170			818171	0.15 mm	UV ₂₅₄



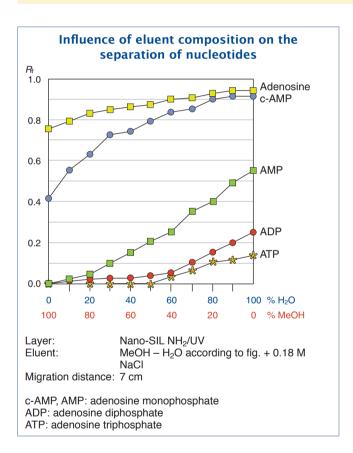
Nano-SIL CN

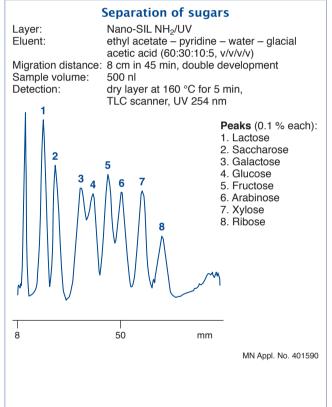
cyano-modified HPTLC silica layers

- base material: nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 2 10 μm, pH stability 2 8 indicator: acid-resistant product with a pale blue fluorescence for short-wave UV (254 nm); UV-absorbing substances apppear as dark-blue to black spots on a light-blue background
- cyanopropyl modification, carbon content 5.5 %
- \odot order of polarity: silica > DIOL > NH₂ > \mathbb{CN} > RP-2 > C 18-50 > RP-18 W > C 18-100
- available as glass plates or ALUGRAM® aluminium sheets
- onormal phase or reversed phase separation modes depending on the polarity of the developing solvent (see figure below)
- recommended application: steroid hormones, phenols, preservatives

Ordering information

Plate size [cm] Pack of [plates]	4 x 8 50	10 x 10 25	10 x 20 25	20 x 20 25	Thickness of layer	Fluorescent indicator
Glass plates						
Nano-SIL CN/UV		811115	811116		0.20 mm	UV ₂₅₄
ALUGRAM® alum	ninium sheet	S				
Nano-SIL CN/UV	818184			818185	0.15 mm	UV_{254}




Modified silica layers for HPTLC

Nano-SIL NH₂

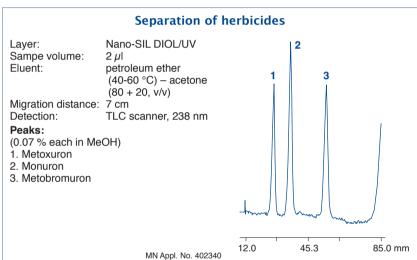
amino-modified HPTLC silica layers

- base material: nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 2 10 μm, pH stability 2 8 indicator: acid-resistant product with a pale blue fluorescence for short-wave UV (254 nm); UV-absorbing substances apppear as dark-blue to black spots on a light-blue background
- aminopropyl modification, carbon content 3.5 %
- order of polarity: silica > DIOL > NH_2 > CN > RP-2 > C 18-50 > RP-18 W > C 18-100
- available with or without fluorescent indicator, as glass plates or ALUGRAM® aluminium sheets
- layer can be wetted equally well by pure water as by organic solvents
- recommended application: vitamins, sugars, steroids, purine derivatives, xanthines, phenols, nucleotides and pesticides

Ordering information

Plate size [cm] Pack of [plates]	4 x 8 50	10 x 10 25	10 x 20 25	20 x 20 25	Thickness of layer	Fluorescent indicator
rack or [plates]					layer	marcator
Glass plates						
Nano-SIL NH ₂		811109			0.20 mm	-
Nano-SIL NH ₂ /UV		811111	811112		0.20 mm	UV_{254}
ALUGRAM® alum	ninium sheet	:S				
Nano-SIL NH ₂ /UV	818182			818183	0.15 mm	UV_{254}

Modified silica layers for HPTLC



Nano-SIL DIOL

diol-modified HPTLC silica layers

- base material: nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 2 10 μm, pH stability 2 8 indicator: acid-resistant product with a pale blue fluorescence for short-wave UV (254 nm); UV-absorbing substances apppear as dark-blue to black spots on a light-blue background
- odiol modification, carbon content 5.5 %
- \odot order of polarity: silica > DIOL > NH₂ > CN > RP-2 > C 18-50 > RP-18 W > C 18-100
- available as glass plates or ALUGRAM® aluminium sheets
- layer can be wetted equally well by pure water as by organic solvents
- recommended application: steroids, pesticides and plant constituents;
 for critical separations an alternative to silica, since it is less sensitive to the water content of the environment; leads to more reproducible results compared to silica

Ordering information

Plate size [cm] Pack of [plates]	4 x 8 50	10 x 10 25	10 x 20 25	20 x 20 25	Thickness of layer	Fluorescent indicator
Glass plates						
Nano-SIL DIOL/UV		811120	811121		0.20 mm	UV ₂₅₄
ALUGRAM® alumii	nium sheet	S				
Nano-SIL DIOL/UV	818180			818181	0.15 mm	UV ₂₅₄

HPTLC method development kits

for selection of the optimum HPTLC plate for a given separation

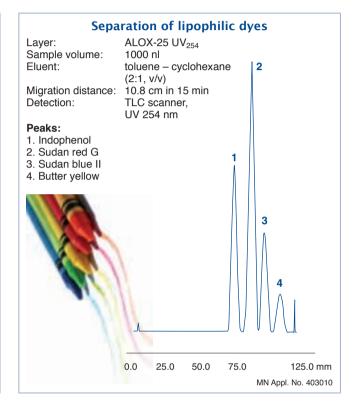
REF **811001**

Glass plates: 3 plates 10 x 10 cm (scored to 5 x 10 cm) each of Nano-SIL C18-100/UV₂₅₄, RP-18 W/UV₂₅₄, RP-2/UV₂₅₄, Nano-SIL CN/UV, Nano-SIL NH₂/UV, Nano-SIL DIOL/UV

ALUGRAM® aluminium sheets: 5 sheets 4 x 8 cm each of RP-18 W/UV₂₅₄, RP-2/UV₂₅₄, Nano-SIL CN/UV, Nano-SIL NH₂/UV, Nano-SIL DIOL/UV 818001

MN

www.mn-net.com — 197


Aluminium oxide layers for TLC

ALOX

aluminium oxide layers for TLC

aluminium oxide, specific surface (BET) ~ 200 m²/g, mean pore size 60 Å; inert organic binder indicator manganese-activated zinc silicate recommended application: terpenes, alkaloids, steroids, aliphatic and aromatic compounds
We recommend to activate aluminium oxide layers before use by heating 10 minutes at 120 °C.

Separation of bisadducts of fullerenes F. Djojo, A. Hirsch, Chem. Eur. J. 4 (1998), 344 - 356 ALUGRAM® ALOX N/UV₂₅₄ Layer: Eluent: toluene - ethyl acetate (95:5, v/v) Detection: UV, 254 nm Compound $R_{\rm f}$ values: Bis[bis(4-phenyloxazolin)methan]fullerene 1: 0.14 Bis[bis(4-phenyloxazolin)methan]fullerene 2: 0.26 2 MN Appl. No. 401930

Ordering information

Glass plates					
Plate size [cm]		5 x 20	20 x 20	Thickness of layer	Fluorescent
Pack of [plates]		100	25		indicator
ALOX-25		807011	807013	0.25 mm	-
ALOX-25 UV ₂₅₄		807021	807023	0.25 mm	UV_{254}
Pack of [plates]			15		
ALOX-100 UV ₂₅₄			807033	1.00 mm	UV_{254}
POLYGRAM® polyester	r sheets				
Plate size [cm]	4 x 8	5 x 20	20 x 20		
Pack of [plates]	50	50	25		
ALOX N		802012	802013	0.20 mm	-
ALOX N/UV ₂₅₄	802021	802022	802023	0.20 mm	UV ₂₅₄
ALUGRAM® aluminium	sheets				
Plate size [cm]		5 x 20	20 x 20		
Pack of [plates]		50	25		
ALOX N			818013	0.20 mm	-
ALOX N/UV ₂₅₄		818024	818023	0.20 mm	UV_{254}

Cellulose MN 300

native fibrous cellulose layers for TLC

 fibre length (95 %) 2 – 20 μm, average degree of polymerisation 400 – 500, specific surface acc. to Blaine 15000 cm²/g

 \leq 20 ppm Fe, 6 ppm Cu, 7 ppm P; CH $_2$ Cl $_2$ extract \leq 0.25 %; residue on ignition at 850 °C \leq 1500 ppm recommended application: partition chromatography of polar substances such as amino acids, carboxylic acids or carbohydrates

Ordering information

Glass plates						
Plate size [cm]		5 x 20	10 x 20	20 x 20	Thickness of	Fluorescent
Pack of [plates]		100	50	25	layer	indicator
CEL 300-10		808011	808012	808013	0.10 mm	-
CEL 300-10 UV ₂₅₄		808021	808022	808023	0.10 mm	UV_{254}
CEL 300-25			808032	808033	0.25 mm	-
CEL 300-25 UV ₂₅₄			808042	808043	0.25 mm	UV_{254}
Pack of [plates]				20		
CEL 300-50				808053	0.50 mm	-
CEL 300-50 UV ₂₅₄				808063	0.50 mm	UV ₂₅₄
POLYGRAM® poly	ester sheets	•				
Plate size [cm]	4 x 8	5 x 20		20 x 20		
Pack of [plates]	50	50		25		
CEL 300	801011	801012		801013	0.10 mm	-
CEL 300 UV ₂₅₄		801022		801023	0.10 mm	UV_{254}
ALUGRAM® alumi	inium sheets	;				
Plate size [cm]	4 x 8	5 x 20		20 x 20		
Pack of [plates]	50	50		25		
CEL 300	818155	818154		818153	0.10 mm	-
CEL 300 UV ₂₅₄		818157		818156	0.10 mm	UV ₂₅₄

Cellulose MN 400 (AVICEL®) microcrystalline cellulose layers for TLC

prepared by hydrolysis of high purity cellulose with HCl; mean degree of polymerisation 40 - 200
 recommended application: carboxylic acids, lower alcohols, urea and purine derivatives

Ordering information

MN

Plate size [cm]	5 x 20	10 x 20	20 x 20	Thickness of	Fluorescent
Pack of [plates]	50	50	25	layer	indicator
Glass plates					
CEL 400-10		808072	808073	0.10 mm	-
CEL 400-10 UV ₂₅₄		808082	808083	0.10 mm	UV ₂₅₄
POLYGRAM® poly	yester sheets				
CEL 400	801112		801113	0.10 mm	-
CEL 400 UV ₂₅₄	801122		801123	0.10 mm	UV_{254}

Cellulose layers for TLC

Cellulose MN 300 DEAE DEAE-modified cellulose ion exchange layers

• fibrous cellulose modified with diethylaminoethyl groups: R - O - C_2H_4 - $N(C_2H_5)_2$ mixed layers of cellulose MN 300 DEAE and high purity cellulose MN 300 HR are recommended for separation of mono- and oligonucleotides in nucleic acid hydrolysates

Separation of mono- and oligonucleotides in nucleic acid hydrolysates on layers of MN 300 DEAE/HR

The Medical Research Council Laboratory of Molecular Biology in Cambridge (UK) has developed a special procedure for the separation of radioactively labelled mono- and oligonucleotides in hydrolysates of ribonucleic acid. It is a 2-dimensional procedure, in which mononucleotides and oligonucleotides are separated up to n = 50. The separation process consists of 2 stages, first a high voltage electrophoretic group fractionation on acetate sheets in the 1st dimension and then a TLC separation in the 2nd dimension after blotting of the preseparated substances onto a mixed layer of DEAE cellulose and HR cellulose in the ratio 2:15.

As eluent concentrated urea solutions with addition of homomix solutions are used, which consist of ribonucleic acid hydrolysates and dialysates. Mononucleotides move up to the front, and depending on chain length the oligonucleotides appear between the $R_{\rm f}$ values 1 and 0. The evaluation of chromatograms is by autoradiography after treatment with red ink, which contains radioactive sulphur ³⁵S.

References

G. G. Brownlee et al., European I. Biochem. 11 (1969) 395 B. E. Griffin, FEBS Letters 15 (1971) 165 F. Sanger et al., J. Mol. Biol. 13 (1965) 373 - 398.

Ordering information

Plate size [cm] Pack of [plates]	5 x 20 50	20 x 20 25	40 x 20 25	Thickness of layer	Fluorescent indicator
POLYGRAM® polyes	ter sheets				
CEL 300 DEAE CEL 300 DEAE/HR-2/15	801072	801073	801074 801084	0.10 mm 0.10 mm	- -

Cellulose MN 300 PEI PEI-impregnated cellulose ion exchange layers

fibrous cellulose **impregnated** with polyethyleneimine recommended application: analysis of nucleic acids, and of mutagenic substances with the ³²P postlabelling procedure (see application 402260 at www.mn-net.com)

Ordering information

Plate size [cm] Pack of [plates] POLYGRAM® polyes	5 x 20	20 x 20	40 x 20	Thickness of	Fluorescent
	50	25	25	layer	indicator
CEL 300 PEI	801052	801053	801054	0.10 mm	–
CEL 300 PEI/UV ₂₅₄	801062	801063		0.10 mm	UV ₂₅₄

Acetylated cellulose MN 300

fibrous cellulose with 10 or 20 % content of acetylated cellulose recommended application: reversed phase chromatography

Ordering information

Plate size [cm]	Acetyl content	20 x 20	Thickness of layer	Fluorescent indicator			
Pack of [plates]		25					
Glass plates							
CEL 300-10/AC-10 %	10 %	808113	0.10 mm	-			
CEL 300-10/AC-20 %	20 %	808123	0.10 mm	-			
POLYGRAM® polyester sheets							
CEL 300 AC-10 %	10 %	801033	0.10 mm	-			

Layers for special TLC separations

Polyamide-6

ε-aminopolycaprolactame layers for TLC

opolyamide 6 = Nylon 6 = perlon = ε-aminopolycaprolactame separation mechanism based on hydrogen bonds to amide groups of the polymer matrix as well as on ionic, dipol and electron donor/acceptor interactions recommended application: natural compounds, phenols, carboxylic acids, aromatic nitro compounds and especially amino acids

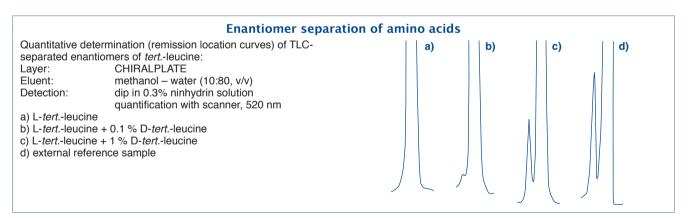

Ordering information

Plate size [cm]	5 x 20	20 x 20	Thickness of layer	Fluorescent indicator
Pack of [plates]	50	25		
POLYGRAM® polyest	ter sheets			
POLYAMIDE-6	803012	803013	0.10 mm	-
POLYAMIDE-6 UV ₂₅₄	803022	803023	0.10 mm	UV ₂₅₄

CHIRALPLATE

special layer for TLC enantiomer separation

P 31 43 726 and EP 0 143 147) separation based on ligand exchange, i.e. formation of ternary mixed-ligand complexes with the Cu(II) ions; differences in the stability of the diastereomeric complexes cause chromatographic separation recommended application: enantiomer separation of amino acids, *N*-methylamino acids, *N*-formylamino acids, α-alkylamino acids, thiazolidine derivatives, dipeptides, lactones, α-hydroxycarboxylic acids A review on the application of CHIRALPLATE has been given by K. Günther [J. Chromatogr. 448 (1988) 11 – 30].

Ordering information

Plate size [cm]	5 x 20	10 x 10	10 x 20	20 x 20	Thickness of layer	Fluorescent indicator
Glass plates						
Pack of [plates]			4			
CHIRALPLATE			811056		0.25 mm	UV ₂₅₄
Pack of [plates]	50	25	25	25		
CHIRALPLATE	811057	811059	811055	811058	0.25 mm	UV ₂₅₄

Layers for special TLC separations

SIL G-25 HR

special layer for aflatoxin separation

high purity silica 60 with gypsum and a very small quantity of a polymeric organic binder softer than the standard silica layer, i.e. spots can be scratched and the layer absorbs faster recommended for the separation of aflatoxins

Ordering information

	Plate size [cm]	20 x 20	Thickness of layer	Fluorescent indicator
	Pack of [plates]	25		
Glass plates				
SIL G-25 HR		809033	0.25 mm	-
SIL G-25 HR/UV ₂₅₄		809043	0.25 mm	UV ₂₅₄

SIL G-25 Tenside special layer for separation of surfactants

 silica G impregnated with ammonium sulphate recommended for the separation of detergents, alkanesulphonates, polyglycols etc.

Ordering information

	Plate size [cm] Pack of [plates]	20 x 20 25	Thickness of layer	Fluorescent indicator
Glass plates				
SIL G-25 Tenside		810063	0.25 mm	-

GUR N

TLC layers with kieselguhr

kieselguhr is completely inactive and mostly used for special separations after suitable impregnation

Ordering information

	Plate size [cm] Pack of [plates]	20 x 20 25	Thickness of layer	Fluorescent indicator
Glass plates				
GUR N-25		810074	0.25 mm	-
GUR N-25 UV ₂₅₄		810073	0.25 mm	UV ₂₅₄

Layers for special TLC separations

Nano-SIL PAH

special HPTLC silica layer for PAH analysis

base material: nano silica 60, specific surface (BET) ~ 500 m²/g, mean pore size 60 Å, specific pore volume 0.75 ml/g, particle size 2 - 10 μm; impregnated with caffeine, an electron acceptor for PAH analysis based on charge-transfer complexes

recommended for determination of the six PAH according to German drinking water specifications (TVO) in accordance with German standard DIN 38407 part 7 (see application 402400 at www.mn-net.com)

Ordering information

Plate size [cm] Pack of [plates]	10 x 10 25	10 x 20 50	Thickness of layer	Fluorescent indicator
Glass plates				
Nano-SIL-PAH	811050	811051	0.20 mm	-

IONEX

special mixed layers of silica with ion exchange resins

- O IONEX-25 SA-Na: mixture of silica and a strongly acidic cation exchanger coated to polyester sheets
- ONEX-25 SB-AC: mixture of silica and a strongly basic anion exchanger coated to polyester sheets both layers contain an inert organic binder

recommended application: amino acids, e.g. in protein and peptide hydrolysates, in seeds and fodder, in biological fluids; for racemate separation in peptide syntheses, for the separation of nucleic acid hydrolysates, aminosugars, aminocarboxylic acids, antibiotics, inorganic phosphates, cations and other compounds with ionic groups

Ordering information

•				
	Plate size [cm] Pack of	20 x 20 25	Thickness of layer	Fluorescent indicator
POLYGRAM® polyester sheets				
IONEX-25 SA-Na	strongly acidic cation exchanger	806013	0.20 mm	-
IONEX-25 SB-AC	strongly basic anion exchanger	806023	0.20 mm	_

Mixed layers for TLC

- ◆ ALOX/CEL-AC-Mix-25: mixed layer of aluminium oxide G and acetylated cellulose recommended for separation of PAH (see application 401040 at www.mn-net.com)
- SILCEL-Mix-25: mixed layer of cellulose and silica recommended for separation of preservatives and other antimicrobial compounds (see application 401420 at www.mn-net.com)
- GURSIL-Mix-25: mixed layer of kieselguhr and silica recommended for separation of carbohydrates, antioxidants, steroids and photographic developer solutions

Ordering information

Plate size [cm]	10 x 20	20 x 20	Thickness of layer	Fluorescent indicator
Pack of [plates]	50 / pack	25 / pack		
Glass plates				
ALOX/CEL-AC-Mix-25	810054	810053	0.25 mm	-
SILCEL-Mix-25 UV ₂₅₄		810043	0.25 mm	UV ₂₅₄
GURSIL-Mix-25 UV ₂₅₄	810076		0.25 mm	UV ₂₅₄

MN www.mn-net.com — 203

Chromatography papers

Chromatography papers

- paper chromatography is the oldest chromatographic technique separation due to partition of the analytes between special paper grades and the mobile phase, which penetrates the paper by capillary action ascending, descending and circular techniques are possible
- please note: always treat chromatography papers with care: never touch them with fingers, because this will contaminate the surface do not bend them sharply, because this will decrease the capillary action (preferably store them flat)
 Chromatography papers possess a preferred direction of the fibres with higher absorption properties (with our sheets 58 x 60 cm, the longer edge). We recommend to use them in the direction of higher absorption.

Ordering information

Code	Weight [g/ m²]	Thickness [mm]	Description	Flow rate	Size [cm]	Pack of	REF
MN 214	140	0.28	smooth	90 - 100 mm/30 min	58 x 60	100 sheets	817001
MN 218	180	0.36	smooth	90 - 100 mm/30 min	58 x 60	100 sheets	817002
MN 260	90	0.20	smooth	120 - 130 mm/30 min	58 x 60	100 sheets	817003
MN 261	90	0.18	smooth	90 - 100 mm/30 min	58 x 60	100 sheets	817004
MN 827	270	0.70	soft carton	130 - 140 mm/10 min	58 x 60	100 sheets	817005
MN 866	650	1.70	soft carton	100 - 120 mm/10 min	38 x 38	100 sheets	817006
MN 866	650	1.70	soft carton	100 - 120 mm/10 min	80 x 80	100 sheets	817007
MN 214 ff	140	0.28	MN 214 defatted *	90 - 100 mm/30 min	56 x 58	100 sheets	817008

^{*)} This paper is extracted with organic solvents

For further papers, filters and membranes, feel free to ask for our catalogue "Filtration"

204 _____ www.mn-net.com

TLC micro-sets

introductory kits for science education

Beginner's set

features separations with simple developing solvents; samples are coloured thus eliminating the need for visualisation. All equipment needed is contained in the set.

Advanced sets

require some experience and skill from the user: some of the samples have to be pretreated before separation, and for identification of substances spray reagents have to be used

TLC wine set

chromatographic rapid test for evaluating the conversion of malic acid to lactic acid in wine (2nd fermentation), i.e. the optimum time for bottling of a wine

TLC micro-set A for beginners

This kit contains all chemicals and accessories for the following separations:

- ✓ separation of the fat-soluble (lipophilic) dye mixture 1: butter yellow, indophenol, sudan blue II, sudan red G
- ✓ separation of a mixture of anthraquinone dyes (test dye mixture 2): blue 1, blue 3, green, green blue, red, violet 1, violet 2
- ✓ separation of a mixture of food dyes (test dye mixture 3): brilliant black BN (E151), fast red E, erythrosine (E127), yellow orange S (sunset yellow CFC, E110), naphthol red S, ponceau 4 R (E124), tartrazine (E102)
- ✓ separation of dyes from felt tip pens

Contents of TLC micro-set A for beginners

- 1 manual
- 3 developing chambers
- 50 glass capillaries 1 μ l
- 1 spotting guide
- 1 measuring cylinder10 ml
- 50 polyester sheets 4 x 8 cm each of POLYGRAM® SIL G/ UV₂₅₄, ALOX N/UV₂₅₄ and CEL 300
- 8 ml each of test dye mixture 1 (4 lipophilic dyes), test dyes sudan red G, and sudan blue II
- 8 ml each of test dye mixture 2 (7 anthraquinone dyes), test dyes blue 1 and violet 2
- 8 ml each of test dye mixture 3 (7 food dyes), test dyes yellow orange S, and brilliant black BN
- 100 ml each of toluene, toluene/cyclohexane (2:1, v/v) chloroform/acetone (1:1, v/v)
 - 2.5 % sodium citrate solution 25 % ammonia/2-propanol (5:3, v/v)
- 2 felt tip pens

TLC micro-set M

This kit is prerequisite for the separations with kits F 1 to F 3. In addition, it serves as basic equipment for the individual study of further thin layer chromatographic experiments.

Contents of TLC micro-set M (materials kit)

- 2 x 50 glass capillaries 1 μ I, 2 spotting guides
- 1 rubber cap for capillaries, 1 measuring cylinder 10 ml,
- 1 beaker 25 ml, 2 developing chambers
- 1 glass laboratory sprayer with rubber bulb
- 1 plastic syringe 1 ml, 20 sheets filter paper MN 713 (15 x 21 cm) 50 polyester sheets 4 x 8 cm each of POLYGRAM® SIL G/UV $_{254},$ ALOX N/UV $_{254}$ and CEL 300

Ordering information

Designation	Pack of	REF
TLC micro-set A for beginners	1 kit	814000
Replacement parts for TLC micro-set A		
Test dye mixture 1, solution of 4 lipophilic dyes in toluene (components see above)	8 ml	814001
Test dye mixture 2, solution of 7 anthraquinone dyes in chloroform (components see above)	8 ml	814002
Test dye mixture 3, aqueous solution of 7 food dyes (components see above)	8 ml	814003
Collection of 4 individual components of test dye mixture 1	4 x 8 ml	814011
Collection of 7 individual components of test dye mixture 2	7 x 8 ml	814012
Collection of 7 individual components of test dye mixture 3	7 x 8 ml	814013
Sodium citrate, 2.5 g in 100 ml bottles to fill up with distilled water	2.5 g	814029
TLC micro-set M (materials kit)	1 kit	814100

MN www.mn-net.com — 205

Introductory kits for TLC

TLC micro-set F 1

This kit contains all chemicals required for the separa-

- amino acids (test mixture, consisting of alanine, arginine, tryptophan and valine)
- √ amino acids in urine
- the heavy metal cations copper(II), manganese(II), and nickel(II)

Contents of TLC micro-set F 1

1 manual; 50 glass capillaries 1 μ l

50 polyester sheets 4 x 8 cm each of POLYGRAM $^{\! (8)}$ SIL G/UV $_{\! 254}$ and CEL 300

100 ml each of *n*-butanol, ninhydrin spray reagent (0.2 % in ethanol), acetone, 25 % ammonia, rubeanic acid spray reagent 50 ml each of 50 % acetic acid. 18 % hydrochloric acid

8 ml each of the amino acid test mixture (see left), tryptophan and arginine reference solutions

8 ml each of the heavy metal cation test mixture (see left), $\rm Mn^{2+}$, and $\rm Ni^{2+}$ reference solution

TLC micro-set F 2

This kit contains all chemicals required

- √ for the analysis of edible fats
- as well as for analysis of fats and cholesterol in blood

TLC micro-set F 3

This kit contains all chemicals required

- √ for the separation of analgetics (pain relievers)
- ✓ and for drug analysis as shown for cinchona bark

Contents of TLC micro-set F 2

1 manual; 50 glass capillaries 1 μ l

50 polyester sheets 4 x 8 cm POLYGRAM® SIL G/UV₂₅₄

5 blood lancets, 5 disposable pipettes 25 μ l, 5 alcoholic pads,

5 sample vials N 11-1 (2 ml) with PE caps and seals,

3 sample vials 30 ml (for butter, margarine and edible oil)

100 ml each of chloroform, dichloromethane, toluene and molybdatophosphoric acid spray reagent

50 ml acetone with calibrated pipette

8 ml cholesterol reference solution

Contents of TLC micro-set F 3

1 manual, 50 glass capillaries 1 μ l

50 polyester sheets 4 x 8 cm POLYGRAM® SIL G/UV₂₅₄
5 Aspirin® tablets, 5 Thomapyrin® tablets, 20 folded filters MN
615 1/4, 11 cm diameter, 3 sample vials 8 ml (for Aspirin sample, Thomapyrin sample, cinchona bark extract), 5 g cinchona bark,
100 ml each of chloroform, methanol, toluene/diethyl ether (55:35, v/v), spray reagent for caffeine and Dragendorff-Munier spray reagent, 50 ml each of iron(III) chloride solution and potassium hexacyanoferrate solution, 30 ml glacial acetic acid/ethyl acetate (6 : 2,5, v/v), 25 ml each of 12.5% ammonia and diethylamine
8 ml each of caffeine, paracetamol, quinine reference solutions

Ordering information

Designation	Pack of	REF
TLC micro-set F 1	1 kit	814200
Replacement parts for TLC micro-set F 1		
Amino acid test mixtures (components see above)	8 ml	814201
Collection of 4 individual components of the amino acid test mixture	4 x 8 ml	814202
Cation test mixture (Cu ²⁺ , Mn ²⁺ , Ni ²⁺)	8 ml	814204
Collection of 2 individual components of the cation test mixture	2 x 8 ml	814205
TLC micro-set F 2	1 kit	814300
Replacement parts for TLC micro-set F 2		
Cholesterol reference solution	8 ml	814301
TLC micro-set F 3	1 kit	814400
Replacement parts for TLC micro-set F 3		
Quinine reference solution	8 ml	814405
Paracetamol reference solution	8 ml	814406
Caffeine reference solution	8 ml	814407
Replacement parts for all TLC micro-sets		
TLC polyester sheets POLYGRAM® SIL G/UV ₂₅₄ , 4 x 8 cm	4 x 50	814025
TLC polyester sheets POLYGRAM® ALOX N/UV ₂₅₄ , 4 x 8 cm	4 x 50	814026
TLC polyester sheets POLYGRAM® CEL 300, 4 x 8 cm	4 x 50	814027
TLC polyester sheets POLYGRAM® 4 x 8 cm: 100 x SIL G/UV ₂₅₄ ; 50 x ALOX N/UV ₂₅₄ ; 50 x CEL 300	1 set	814028

TLC wine set

This kit contains all chemicals and equipment required for determination of malic, lactic, and tartaric acid in wine (evaluation of the conversion of malic to lactic acid, 2nd fermentation)

Contents of the TLC wine set

detailed instruction leaflet 50 polyester sheets 4 x 8 cm POLYGRAM® CEL 300 cation exchanger, eluent, reference substances developing chamber, capillaries, spotting guide

Ordering information

Designation	Pack of	REF
TLC wine set		
	1 set	814500

www.mn-net.com — 207

Accessories for TLC

TLC accessories

Designation		Pack of	REF
Simultaneous developing chamber for TLC, 20 x 20 cm, for up to 5 plates		1	814019
Simultaneous developing chamber for TLC, 10 x 10 cm, for up to 2 plates		1	814018
Developing chambers for TLC micro-sets		4	814021
Glass laboratory sprayer with rubber bulb		1	814101
Glass capillaries 1 µl		3 x 50	814022
Rubber caps for capillaries		2	814102
Plastic syringe, 1 ml content with graduation		1	814104
Spotting guides		2	814023
Measuring cylinders, glass, 10 ml content		2	814024
MN ALUGRAM® scissors, ground blade, black handle	NEW!	1	818666
Filter paper MN 713, 15 x 21 cm		100	814103
Folded filters MN 615 1/4, 11 cm diameter		100	531011
Chromatography paper MN 260, 7.5 x 17 cm (for chamber saturation)		100	814030

Visualisation reagents

- a small selection of frequently used spray reagents for postchromatographic detection reactions in TLC suited for spraying or dipping TLC plates
 - a detailed description of many more detection procedures for TLC is available on request

Ordering information

Spray reagent	Solvent	Detection of	Pack of	REF
Aniline phthalate	2-propanol / ethanol (1:1)	reducing sugars, oxohalic acids	100 ml	814919
Bromocresol green	2-propanol	organic acids	100 ml	814920
Caffeine reagent	water/acetone	caffeine	100 ml	814401
2',7'-Dichlorofluorescein	2-propanol	lipids (saturated, unsaturated)	100 ml	814921
4-(Dimethylamino)-benzaldehyde	2-propanol	terpenes, sugars, steroids	100 ml	814922
Dragendorff-Munier	water	alkaloids and other nitrogen compounds	100 ml	814402
Iron(III) chloride	water	acetylsalicylic acid, paracetamol	100 ml	814403
Potassium hexacyanoferrate(III)	water		100 ml	814404
Molybdatophosphoric acid	ethanol	lipids, sterols, steroids, reducing compounds	100 ml	814302
Ninhydrin	ethanol	amino acids, amines and amino sugars	100 ml	814203
Rhodamin B	ethanol	lipids	100 ml	814923
Rubeanic acid	ethanol	heavy metal cations	100 ml	814206

Silica adsorbents for TLC

pore size 60 Å, pore volume 0.75 ml/g, specific surface (BET) ~ 500 m²/g, pH of a 10 % aqueous suspension 7.0

Silica G

standard grade, particle size 2 – 20 μ m, Fe < 0.02 %, Cl < 0.02 %, 13 % gypsum as binder, supplied with or without fluorescence indicator UV₂₅₄

Silica N

standard grade, particle size 2 – 20 μm , Fe < 0.02 %, Cl < 0.02 %, no binder, supplied with or without fluorescence indicator UV₂₅₄

Silica G-HR

high purity grade, particle size 3 – 20 μ m, Fe < 0.002 %, Cl < 0.008 %, gypsum as binder, supplied without fluorescence indicator

Silica P

preparative grade, particle size 5 – 50 μ m, Fe < 0.02 %, Cl < 0.02 %, organic binder, supplied with fluorescence indicator UV₂₅₄

Silica P with gypsum

preparative grade, particle size 5 – 50 μ m, Fe < 0.02 %, Cl < 0.02 %, gypsum as binder, supplied with fluorescence indicator UV₂₅₄

Ordering information

Designation	Fluorescent indicator	1 kg	5 kg
Silica G	-	816310.1	816310.5
Silica G/UV ₂₅₄	UV_{254}	816320.1	816320.5
Silica N	-	816330.1	816330.5
Silica N/UV ₂₅₄	UV_{254}	816340.1	816340.5
Silica G-HR	-	816410.1	816410.5
Silica P/UV ₂₅₄	UV_{254}	816380.1	816380.5
Silica P/UV ₂₅₄ with gypsum	UV_{254}	816400.1	816400.5

Aluminium oxide

adsorbents for TLC

pore size 60 Å, specific surface (BET) ~ 200 m²/g

- Aluminium oxide G
 - ~ 10 % gypsum as binder, supplied with or without fluorescence indicator
- Aluminium oxide N

no binder, supplied without fluorescence indicator

Ordering information

Designation	Fluorescent indicator	1 kg	5 kg
Aluminium oxide G	=	816010.1	816010.5
Aluminium oxide G/UV ₂₅₄	UV_{254}	816020.1	816020.5
Aluminium oxide N	-	816030.1	816030.5

Polyamide

adsorbents for TLC

O Polyamide 6 = nylon 6 = perlon = ε-aminopolycaprolactame

Ordering information

Designation	Fluorescent indicator	1 kg
Polyamide TLC 6	-	816610.1
Polyamide TLC 6 UV ₂₅₄	UV ₂₅₄	816620.1

Cellulose MN 301

native fibrous cellulose

- fibre length (95%) 2 20 μm, average degree of polymerisation 400 500, specific surface acc. to Blaine 15000 cm²/g
- Cellulose MN 301: native fibrous cellulose, standard grade
 ≤ 20 ppm Fe, 6 ppm Cu, 7 ppm P, CH₂Cl₂ extract ≤ 0.25 %, residue on ignition at 850 °C ≤ 1500 ppm
- Cellulose MN 301 HR: fibrous cellulose, high purity grade, acid-washed and defatted ≤ 2 ppm Fe, 1 ppm Cu, CH₂Cl₂ extract ≤ 0.025%, residue on ignition at 850 °C ≤ 200 ppm recommended for quantitative investigations, e.g. for separation of carbohydrates with subsequent IR spectroscopy or separation of phosphoric acids, phosphates etc.
- **Cellulose MN 301 A:** special grade for the 32 P postlabelling procedure ≤ 20 ppm Fe, ≤ 6 ppm Cu, ≤ 7 ppm P, CH₂Cl₂ extract ≤ 0.01%, residue on ignition at 850 °C ≤ 500 ppm free of lactobacili contaminations; **not** impregnated with PEI, but designed for impregnation and coating by the user

Ordering information

Designation	Fluorescent indicator	1 kg	5 kg
Cellulose MN 301	-	816250.1	816250.5
Cellulose MN 301 UV ₂₅₄	UV_{254}	816260.1	816260.5
Cellulose MN 301 HR	-	816270.1	816270.5
Cellulose MN 301 A	-	816300.1	816300.5

Fluorescent indicators

UV indicators with efficient radiation for short-wave as well as long-wave UV ranges UV₂₅₄: manganese activated zinc silicate with absorption maximum at 254 nm; green fluorescence; relatively susceptible towards acids; thus its fluorescence can be completely quenched by acidic solvents UV₃₆₆: inorganic fluorescent pigment with absorption maximum at 366 nm; blue fluorescence

Ordering information

	Composition	Absorption maximum	Colour of fluorescence	Pack of 100 g
Fluorescent indicator UV ₂₅₄	manganese-activated zinc silicate	254 nm	green	816710.01
Fluorescent indicator UV ₃₆₆	inorganic fluorescent pigment	366 nm	blue	816720.01